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Abstract.

In this thesis we study three graph polynomials, namely, the chro-

matic polynomial, the Tutte polynomial and the coboundary polyno-

mial. We define a class of graphs which we call triangulated ladder and

give some of its properties. Then we find an explicit expression of the

chromatic polynomial for this class of graphs. Furthermore, we find a

recursive expression of the Tutte polynomial and a recursive expression

of the coboundary polynomial for this class of graphs. Finally we give

a class of links associated with triangulated ladders and give some of

their properties.
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CHAPTER 1

Introduction.

In this thesis we target to compute polynomials whose importance

is crucial in combinatorial theory, namely in graph theory, and in knot

theory. In graph theory, it is usual to associate invariants to combina-

torial objects, in particular to graphs, in order to study some of their

properties. These invariants can be of various types: structural, numer-

ical, algebraic, or polynomial. The Tutte polynomial is a two variables

polynomial originally defined for graphs by Tutte and Whitney and

later generalized to matroids by Crapo (1969). It was first conceived

as an extension of the chromatic polynomial, but nowadays it is known

to have applications in many areas of combinatorics and other areas

of mathematics. One of its striking features is that it contains a great

deal of information about the underlying graph. For instance, from the

knowledge of the Tutte polynomial, one can deduce enumerative results

on bases, colourings, and orientations, and also structural properties

such as connectivity .

The origins of a mathematical theory of knots can be traced back to

the German mathematician Carl Friedrich Gaub , who tried to classify

closed plane curves with a finite number of self-intersections, which he

sometimes called ”Tractfiguren” see de Mier (2003). However, we do

know that Gaub worked on his Tractfiguren in 1825 and 1844. While

Gaub may not have taken a long-term active interest in studying what

we now recognize as knots, his student Johann Benedikt Listing did.

1
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Listing’s 1847 ”Vorstudien zur Topologie”, in which he first coined the

term ”topology,” included a discussion of mathematical knots and their

classification. Listing was interested in developing an algebraic calcu-

lus of knot diagrams so that it could easily be determined when two

diagrams represented the same knot. However, the way he couched the

problem prevented him from proving any useful results in knot theory.

The first work on knot theory outside of Germany began in Scotland

in the late 1860s as the physicist William Thomson (later Lord Kelvin)

began looking for a suitable atomic theory. In 1867, Thomson, who

was inspired by Hermann von Helmholtz’s work on vortex motion and

a demonstration by Peter Guthrie Tait exhibiting the properties of

vortices using smoke rings, presented a paper to the Royal Society

of Edinburgh proposing that atoms were knotted vortices. Thomson

continued thinking about atoms as vortices, sparking the interest of

James Clerk Maxwell. In the fall of 1868, Maxwell began to undertake

a serious study of topology see Maxwell (1995,1862-1873). Specifically,

Maxwell wanted to know when two projections of a link represented

the same link in 3-dimensional space. He did observations that regions

bounded by three or fewer arcs were sufficient to transform any pro-

jection of a link into any other projection. However, nearly sixty years

later the German mathematician Kurt Reidemeister would prove this

very fact, and today the diagrammatic ”moves” discovered by Maxwell

bear Reidemeister’s name. P.G. Tait by 1876 had set out to make a

complete table of knots (up to a certain number of crossings). The

one major positive result that came out of Tait’s initial work on knot

enumeration was the establishment of the existence of knots that could

be deformed from right-handed to left-handed without changing the
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structure of the knot. He called these knots amphicheiral see Mura-

sugi (1987), a term that survives to this day (coexisting with the term

achiral), and recognized that the figure-8 was amphicheiral. The idea

of chirality is important in modern applications of knot theory.

In the Knot Theory until 1984 the main tool to tell the knots apart was

the Alexander polynomials so named after the American mathemati-

cian J.W.Alexander. However, those did not distinguish between the

two trefoil knots. For both knots the Alexander polynomial is the same.

In 1984 a New Zealander Vaughan Jones working on some aspects of

Mathematical Physics discovered (Jones) polynomials that later were

generalized even further simultaneously and quite independently by five

separate groups of mathematicians. Known as the HOMFLY (Hoste-

Ocneanu-Millett-Freyd-Lickorish-Yetter) see Hoste (to appear), these

polynomials in two variables give different equations of the left and the

right trefoil knots, respectively.

Nowadays, relationship between knot and graph polynomials is estab-

lished, for example, it is well-known that the Jones polynomial of an

alternating knot is closely related to the Tutte polynomial of a spe-

cial graph obtained from a regular projection of the knot and a cele-

brated result of F. Jaeger states that the Tutte polynomial of a planar

graph is determined by the HOMFLY polynomial of an associated link

see Jaeger (1988,no.2, 647-654). Now, concerning the ”Triangulated

graphs”, it is known that decomposable models are a subset of undi-

rected graphical models that are built from triangulated graphs. A

graph is triangulated (chordal, decomposable) if every cycle of length

four or greater contains a chord. Models of this type posses a num-

ber of desirable qualities see Deshpande and Garofarakis and Jordan (

2001), including:
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(1) Maximum likelihood estimates can be calculated directly from

marginal probabilities, eliminating the need for Iterative Pro-

portional Fitting procedures,

(2) Closed form expressions for test statistics can be found,

(3) Every decomposable model can be represented as either a di-

rected or undirected model,

(4) Inference algorithms for decomposable graphs are tractable.

Many Mathematicians are writing on triangulated graphs: Jayson

Rome wrote on ”Graph triangulation” in order to decompose models

built from triangulated graphs. F. R. K. Chung and David Mumford

wrote on ”Chordal completions of planar graphs” to finding for a given

graph, a chordal completion with as few edges as possible. They were

motivated by applications in computer vision and artificial intelligence.

Broderick Arneson and Piotr Rudnicki worked to ”Recognizing Chordal

Graphs: Lex BFS and MCS1” for formalizing the algorithm for recog-

nizing chordal graphs... Many authors are interested in triangulated

graphs that myself I was interested in a particular class of triangulated

graph, a triangulated ladder. The importance of graph polynomials

is now well known in terms of information of properties they encode,

and relationship between different polynomials is established, one can

derive a diagram knot from an appropriate graph see Kauffman and

Murasugi (1989) and this process is reversible see Noble and Welsh

(1999) and Traldi (1989). The challenge is: given any graph, are we

able to produce its graph polynomials? This thesis is not to supply the

key issue to that problem, but our simple contribution is limited only

to compute some of the main polynomials to a class of graph we called

Triangulated ladders, since these polynomials encode a good number

of properties for the underlying graph; and then, the knot associated.
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The most powerful tool we are using in this thesis, is to define a tree di-

agram from the formula of deletion contraction of chromatic, cobound-

ary and Tutte polynomials and then, to gather the results in suitable

tableaux so that we determine the graph polynomials at ease.



CHAPTER 2

Basic notions and definitions.

In this chapter, first we give an overview of the thesis and then

after, we give concepts and basic definitions we will need in this work.

2.1. Overview of thesis.

In Chapter 1, we give an introduction to the thesis. In Chapter 2,

we give basic notions and definitions that are relevant to this thesis. In

Section 2.2, we give concepts, basic notions, definitions and notation

that we will need in this thesis. These are: notions of graph theory, ma-

troid notions, deletions and contractions in graphs, graph polynomials,

the definition of a triangulated ladder. We close this section by giving

examples and notation for some triangulated ladders of parallel classes.

In Chapter 3, we give the edge set, the chromatic and the coboundary

polynomials of a triangulated ladder. In Section 3.1, we calculate the

size of the edge set of a triangulated ladder, in Section 3.2, we compute

the expression of the Chromatic polynomial of a triangulated ladder

in both forms, recursive and explicit and in Section 3.3, we compute

the expression of the Coboundary polynomial of a triangulated ladder

using a tree diagram, then we give some examples and we exhibit the

relationship between the coboundary and the chromatic polynomials.

In Chapter 4, we give an expression of the Tutte polynomial and dis-

cuss on a link associated to a triangulated ladder: in Section 4.1, we

compute the Tutte polynomial for a triangulated n-ladder using a tree

diagram, then we give some examples and in Section 4.2, we give the

6
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links associated with a triangulated ladder: first we give a general defi-

nition of links, then we construct a link from a planar graph and finally,

we give the component number of a link associated with a triangulated

ladder. Finally in Chapter 5, we give the conclusion of the thesis.

2.2. Concepts, basic definitions.

In this section, we give notions of graph theory, especially planar

graphs that are relevant to this work. Then, we give basic notions of

matroids, in particular we focus on the relationship between graphs

and matroids that are relevant to this thesis. We recall the notions of

deletion and contraction in a graphs and we are giving also definitions

and theorems stating the main polynomials that we will compute. In

this section we give also the definition of a triangulated ladder, and we

close it with the notation to be used throughout the thesis.

2.2.1. Notions of graph theory. The notions defined in this

subsection are widely known in graph theory; we refer the reader to [?]

for further details. A graph is a triple consisting of a vertex set V (G), an

edge set E(G) and a relation that associates with each edge two vertices

called its endpoints . If two vertices u and v are endpoints of an edge,

they are adjacent and are neighbors . If a vertex v is an endpoint of an

edge e then v and e are incident . A subgraph H of a graph G is a graph

such that V (H) ⊆ V (G) and E(H) ⊆ E(G). We then, write H ⊆ G

and say that G contains H. A loop is an edge whose endpoints are

equal. Multiple edges are edges having the same endpoints. Multiple

edges are also known as parallel edges . A simple graph is a graph

having no loops or multiple edges. A path, as defined by West see

Douglas (1996), is a simple graph whose vertices can be ordered so

that two vertices are adjacent if and only if they are consecutive in the
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list. A walk is a list v0, e1, v1, e2, v2, . . . , ei, vi, . . . , vk, ek, for 1 ≤ i ≤ k,

the edge ei has endpoints vi−1, vi. The length of a walk ( a path ) is

its number of edges. A u, v-walk has the first vertex u and the last

vertex v. These are its endpoints. A walk is closed if its endpoints are

the same. The degree of a vertex is the number of incident edges. A

cycle of a graph is a closed walk all of whose vertices have degree 2.

A graph is connected , if it has an u, v−path whenever u, v ∈ V (G).

A graph with no cycle is acyclic. A forest is an acyclic graph. A

tree is a connected acyclic graph. A leaf is a vertex of degree one.

A spanning subgraph is a subgraph with vertex set V(G). A spanning

tree is a spanning subgraph that is a spanning tree. For the following

theorem we refer the reader to Douglas (1996) for more details.

Theorem 2.2.1. An n vertex graph G for n ≥ 1, is a tree if and

only if G is connected and has n− 1 edges .

A curve is the image of a continuous map from [0, 1] to Rn. A

polygonal curve is a curve composed of the finitely many line segments.

A polygonal is u, v-curve when it starts at u and ends at v. A drawing

of a graph G is a function f defined on V (G)∪E(G) that assigns each

vertex v, a point f(v) in the plane and assigns each edge with endpoints

u, v a polygonal f(u), f(v) -curve. The images of vertices are distinct.

A point in f(e)∩ f(e′) that is not a common endpoint is a crossing . A

graph is a planar if it has a drawing without crossings such a drawing

is a planar embedding of G. A planar graph is a particular embedding

of a planar graph. A curve is closed if its first and last point are the

same. It is simple if it has no repeated points except possibly the first

and the last. An open set in the plan is a set U ⊆ Rn such that for

every p ∈ U , all within small distance from p belong to U . A region
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is an open set U that contains a polygonal u, v -curve for every pair

u, v ∈ U .

2.2.2. Matroid notions. The basic matroid notions defined in

this subsection can be found in Oxley (1992). A matroid is an ordered

pair (E, I) consisting of a finite set E and a collection I of subsets of

E satisfying the following conditions.

(1) ∅ ∈ I;

(2) If I ∈ I and I ′ ⊆ I then I ′ ∈ I ;

(3) If I1 and I2 are in I and |I1| < |I2| then, there is an element e

of I2 − I1 such that I1 ∪ e ∈ I.

If M is a matroid (E, I), then M is called a matroid on E. The

members of I are called the independent sets of M . A member of E,

that is not in I is called dependent . A maximal dependent set in a

matroid is called a circuit of a matroid . We denote the set of circuits

of M by C or C (M). The members of I(M) are those subsets of E(M)

that contain no member of C (M). A maximum independent set in M

is called a basis of M. We start with a graph and we define a matroid

by means of a theorem, whose set of circuits is the set of cycles of the

edge set of the graph. Then we define the rank of a matroid thus the

rank of the corresponding graph. The following theorem is well known

in the literature; for more details see Oxley (1992).

Theorem 2.2.2. Let E be the set of edges of a graph G and C be

the set of edges of sets of cycles of G, then C is the set of circuits of a

matroid on E.

A Matroid M(G) derived above from the graph is called a cycle

matroid . A set X of edges is independent in M(G) if and only if X does

not contain the edge set of a cycle, or equivalently, G[X], the subgraph
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induced by X is a forest. Let M be a matroid (E, I), suppose that X ⊆
E. Let I|X be {I ⊆ X : I ∈ I}. Then it is easy to see that (X, I|X)

is a matroid . We call this matroid the restriction of M to X, denote

M |X. One can check easily that C (M |X) = {C ⊆ X : C ∈ C (M)}.
We define the rank r(X) of X to be the size of a basis B of M |X. The

function r maps 2E into the set of nonnegative integers. This function

is called the rank function of M , we shall usually denote r(M) for

r(E(M)) and sometimes when there is no confusion we denote it r.

2.2.3. Deletions and contractions in graphs. In this thesis,

we often use the operations of deletion and contraction of edges in

a graph G. These operations are widely known in graph theory, for

example see Douglas (1996). In a graph G, contracting an edge e with

endpoints u and v is the replacement of u and v with a single vertex

whose incident edges are the edges other than e that were incident to u

and v. Let G be a graph, we denote G/e or G.e for a graph obtained by

contracting an edge e. This resulting graph has one edge less than G.

In a graph G, deleting an edge e with endpoints u and v is to remove

e
u

v

u

v

Figure 1. Contracting an edge can produce multiples edges

or loops

the edge e while leaving the vertices u and v intact. For a graph G,
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G\e is a graph defined by:

V (G) = V (G);

E(G\e) = E(G)\{e}.

(2.2.1)

An edge e is an isthmus or a bridge or a cut edge for the graph G if

e

Figure 2. Deleting an edge

G is connected and G\e is disconnected. In other words e is an edge

whose deletion increases the number of components of G, that is G\e
has more components than G. If G is a planar graph then G\e and G/e

are planar.

2.2.4. Graph polynomials. To compute the graph polynomials

of the class of the graphs we identified is the main object of the thesis.

These are: the chromatic, the coboundary and the Tutte polynomials.

2.2.4.1. notions of chromatic polynomial. Here we are giving some

basic notions of the chromatic polynomials needed in this work. The

notions defined in this part are well known in graph theory. We refer the

reader to Douglas (1996) for further details. A λ−coloring of a graph G

is a labeling f : V (G) −→ S where |S| = λ. The labels are the colors,

the vertices of one color form a color class. A λ-coloring is proper if

adjacent vertices have different labels. Given λ ∈ N and a graph G, the

value χ(G; λ) is the number of proper coloring f : V (G) −→ [λ], the

λ colors need not all to be used in a coloring f. χ(G; λ) is called the
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chromatic polynomial of G. The following theorem on the chromatic

polynomial of a graph G is well known in the literature, see Douglas

(1996). It is usually referred to as as the deletion-contraction formula

of the chromatic polynomial. Recall that G\e is a minor obtained by

deleting e from G and G/e is a minor obtained by contracting e from

G.

Theorem 2.2.3. If G is a graph and e ∈ E(G) then

χ(G; λ) = χ(G\e; λ)− χ(G/e; λ).

2.2.4.2. Notions of coboundary polynomial. The following defini-

tions and facts of coboundary polynomials are well known. We refer

the reader to [?] for further details. Recall that if A ⊂ E where E is

the edge set of a graph G, then the rank of A, is the number of vertices

in A minus the number of connected components of the graph G(A).

In other words r(A) = V (A) − ω(G\A) where ω(G\A) is the number

of connected components of G(A).

Definition 2.2.4. The coboundary polynomial of a graph G, with

edge set E(G), is a polynomial in two variables λ and S denoted by

B(G; λ, S) and is defined as

B(G; λ, S) =

|A|∑
A⊆E

(S − 1)|A|λr(E)−r(A)

The coboundary polynomial B(G; λ, S) of a graph G is equal to

the coboundary polynomial of its cycle matroid M(G). Therefore, the

theory of coboundary polynomials for matroids generalizes for graphs.

Proposition 2.2.5. Let G be a graph, E(G) its edge set and e ∈
E(G). Then
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(1) If e is neither a loop nor a coloop of G then

B(G; λ, S) = B(G\e; λ, S) + (S − 1)B(G/e; λ, S).

(2) If e is a loop then

B(G; λ, S) = SB(G\e; λ, S).

(3) If e is a coloop, then

B(G; λ, S) = (S + λ− 1)B(G/e; λ, S).

Proposition 2.2.5 is refereed to as the deletion and contraction for-

mula for the coboundary polynomial.

2.2.4.3. Notions on Tutte polynomial. We begin by giving a formal

definition and then, its deletion contraction expression and for further

details on the Tutte polynomial we refer the reader to Stephen(2001).

Recall that if A ⊂ E where E is the edge set of a graph G(E), then rank

of A, is the number of vertices in A minus the number of connected

components of the graph G(A). In other words

r(A) = V (G)− ω(G\A)

where ω(G\A) is the number of connected components of G(A).

Definition 2.2.6. Given a graph G, with edge set E we define a

two variable polynomial, the Tutte polynomial,

T (G; x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).
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The Tutte polynomial of a graph G can be calculated using the the

following deletion-contraction method:

(2.2.2)

T (G; x, y) =





xT (G/e; x, y) : if e is a isthmus

yT (G\e; x, y) : if e is a loop

T (G/e; x, y) + T (G\e; x, y) : otherwise

2.2.5. Triangulated ladders: definitions and examples.

Definition 2.2.7. A simple graph is triangulated if every cycle

of length at least 4, has a chord, that is an edge joining nonadjacent

vertices of the cycle. A triangulated graph is also known as a chordal

graph.

Definition 2.2.8. A graph G is called an n-ladder (see Fig-

ure 3,) if it has the vertex set {1, 2, 3, . . . , 2n − 1, 2n} and the

1 2 3 4 5 67891 01 11 2
Figure 3. A 6− ladder

edge set {{1, 2}, {2, 3}, {3, 4}, . . . , {2n − 2, 2n − 1}, {2n − 1, 2n}} ∪
{{1, 2n}, {2, 2n− 1}, {3, 2n− 2}, . . . , {n, n + 1}}.

Example 2.2.9. The following three figures of graphs G1, G2 and

G3 are examples of different constructions of triangulated 3-ladders.
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Figure 4. G1

Figure 5. G2

Figure 6. G3

All the diagrams shown in Example 2.2.9 represent different trian-

gulations of a 3-ladder. The graphs G1, G2 and G3 are non isomorphic.

Since there are several triangulations of n-ladder, in this thesis we will

only consider the triangulation of an n-ladder as shown in Figure 6 by

diagram G3.

Definition 2.2.10. A triangulated n-ladder is a graph G, having

the following set of vertices V (G) = {1, 2, . . . , 3n − 1} and edge set

E(G) = E1(G)∪E2(G)∪E3(G) where E1(G) = {{1, 2}, {2, 3}, . . . , {n−
1, n}} ∪ {{n + 1, n + 2}, . . . , {2n− 1, 2n}}, E2(G) = {{1, 2n}, {2, 2n−
1}, . . . , {n, n + 1}} and E3(G) = {{k, 2n + k}, {k + 1, 2n + k}, {2n −
k, 2n + k}, {2n + 1− k, 2n + k}} for k = 1, 2, . . . , n− 1. A triangulated

n-ladder is denoted by Tn in this thesis. An edge e1 ∈ E1(G) is called a

bar, an edge e2 ∈ E2(G) is called a rung and an edge e3 ∈ E3 is called

a spoke.



2.2. CONCEPTS, BASIC DEFINITIONS. 16

Definition 2.2.11. Let Tn be a triangulated n-ladder, then we call

n its size, and diagram given in Figure 1 is a graph of a triangulated

n-ladder Tn.

n

n-1

n-2

n+1

n+2

n+3

3n-1

3n-2

Figure 7. Triangulated n-ladder

2.2.6. Notation. We start by introducing new notation that we

will use from this section to the end of the thesis. The following table

gives a clear picture of our notation.

Notation 2.2.12. Here we refer to Tn−1 as a triangulated (n− 1)-

ladder, that corresponds to a triangulated ladder whose the last rung

is {(n − 1, n + 2)}. We denote T ′
n−1 for Tn−1 whose the last rung is

replaced by two parallel edges. We denote T”n−1 for Tn−1 whose last

rung is replaced by three parallel edges.

Tn−1 T ′
n−1 T ′′

n−1

n-1
n+2

n+3 n-2 n-2

n-1n+2

n+3 n-2

n-1n+2

n+3



CHAPTER 3

Edge set, Chromatic and Coboundary Polynomials

of a Triangulated ladder.

In this chapter we are proving a proposition on the number of edges

that has a triangulated ladder, we set two propositions; one recursive

an other explicit for the chromatic polynomial. We close this chapter

by computing a recursive expression of the coboundary polynomial of

a triangulated ladder.

3.1. Edge set of a triangulated ladder.

The diagram given in Figure 1 is an example of a triangulated n-

ladder. In this section we give the number of edges of a triangulated

n

n-1

n-2

n+1

n+2

n+3

3n-1

3n-2

Figure 1. Triangulated n-ladder

n-ladder. We need one lemma and the notation 2.2.12 before stat-

ing an proving the following proposition on the number of edges of a

triangulated n-ladder.

17
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Lemma 3.1.1. A triangulated 2−ladder T2 has eight edges.

Proof. The diagram in Figure 2 is a graph of a triangulated 2-

ladder. It is clear from the diagram that a triangulated 2-ladder is a

Figure 2

4-wheel. But it is well known that an n-wheel has 2n edges see Mphako

(2002). Hence T2 has 8 edges ¤

Notation 3.1.2. Let Ed be a subset of edges of E(Tn) such that Ed

consists of four spokes, two bars and one rung as shown in Figure 3. It

is clear that |Ed| = 7. The deletion of Ed from Tn gives rise to another

 n

n-1

n-2

n+1

n+2

n+3

Figure 3

triangulated-ladder whose the last rung is {n-1, n+2}: we denote it

Tn−1.
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Corollary 3.1.3. It is clear from the previous notation that:

|Tn − Ed| = |Tn−1|

.

Proposition 3.1.4. Let Tn be a triangulated n-ladder. Then for

n > 1,

|E(Tn)| = 7n− 6.

Proof. The proof is by induction on n. Let n = 2. Then by

Lemma 3.1.1, |E(T2)| = 8. Thus

|E(T2)| = 8 = 14− 6 = (7× 2)− 6.

Hence it is true for the base case. Assume it is true for some n = k.

Thus

|E(Tk)| = 7k − 6.

Now we consider n = k + 1. We know that

Tk+1 − Ed = Tk

by applying Corollary 3.1.2. Thus

|E(Tk+1)| − |Ed| = |E(Tk)|.

But we know from Notation 3.1.2 that |Ed| = 7. Thus by induction

hypothesis we have

|E(Tk+1)| = |E(Tk)|+ |Ed|

= 7k − 6 + 7

= 7(k + 1)− 6

Therefore the proposition is true for n ¤
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3.2. Chromatic polynomial of a triangulated ladder.

In this section, we give both a recursive and an explicit expression

of the chromatic polynomial of a triangulated n-ladder. We use the

deletion-contraction formula of the chromatic polynomial as given by

Theorem 2.2.3. Note that a graph with a loop can not be colored

properly, because we can not make the color of a vertex to be different

of itself. Hence we have the following corollary:

Corollary 3.2.1. Let G be a graph with a loop, then χ(G; λ) = 0.

Corollary 3.2.2. Let G be a graph with some parallel edges and

G′ its simplification. Then

χ(G; λ) = χ(G′; λ).

Explicit expressions of the chromatic polynomials of certain classes

of graphs are known. We give some examples of well known classes of

graphs. Recall that a complete graph, denoted Kn, is a simple graph

on n vertices, whose vertices are pairwise adjacent. A complement G

of a simple graph G is a simple graph with vertex set V(G) defined by

{u, v} ∈ E(G) if and only if {u, v} 6∈ E(G). Hence Kn is a graph with

n vertices and no edges .

Example 3.2.3. The following are some examples:

(1) Let Kn be a complete graph on n vertices, then

χ(Kn; λ) = λ(λ− 1)(λ− 2) . . . (λ− n + 1).

(2) Let tn be a tree of n vertices, then

χ(tn; λ) = λ(λ− 1)n−1.
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(3) Let Cn be an n-cycle, then

χ(Cn; λ) = (λ− 1)n + (−1)n(λ− 1).

(4) Let Kn be the complement of the complete graph Kn, then

χ(Kn; λ) = λn.

Now we are going to state and prove the following lemma:

Lemma 3.2.4. Let G be a graph and let G1 be a graph obtained from

G by adding a coloop, then

(G1; λ) = (λ− 1)χ(G; λ).

Proof. To ease notation, each diagram in Figure 4 represents the

chromatic polynomial of the graph. Hence

G

e

-
-

-------
G G

G
G

G

-

=λ

=(λ−1)

=

Figure 4

χ(G1; λ) = (λ− 1)χ(G; λ)

as required ¤
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Notation 3.2.5. A graph Ĝ will denote a graph obtained by adding

two extra edges, say f and g to a graph G such that e, f, g is a three

cycle and e ∈ E(G).

Lemma 3.2.6. Let G and Ĝ be two graphs, and let e be an edge in

E(G) and f and g be two edges in E(Ĝ)\E(G) such that the edges e,

f , g make up a 3-cycle in E(Ĝ). Then

χ(Ĝ; λ) = (λ− 2)χ(G; λ).

Proof. In this proof we are going to use the deletion contraction

formula as shown in Figure 5. To ease notation, each diagram in Fig-

ure 5 represents the chromatic polynomial of that graph. Thus by

e
f

g e
f
e
f

e

GGG

= -

Figure 5

applying Lemma 3.2.4, we get

χ(Ĝ; λ) = (λ− 1)χ(G; λ)− χ(G; λ)

= (λ− 2)χ(G; λ)

¤

Corollary 3.2.7. If G is a 3-cycle, then

χ(G; λ) = λ(λ− 1)(λ− 2).

Lemma 3.2.8. If G3 is a graph as given by Figure 6, then

χ(G3; λ) = λ(λ− 1)(λ− 2)2.
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Figure 6. The graphG3

Proof. By applying Lemma 3.2.6 and Corollary 3.2.7, we get

χ(G3; λ) = (λ− 2)χ(C3; λ)

= (λ− 2)λ(λ− 1)(λ− 2)

= λ(λ− 1)(λ− 2)2

¤

Lemma 3.2.9. If G4 is a graph as given by Figure 7, then

χ(G4; λ) = λ(λ− 1)(λ− 2)3.

Figure 7. The graph G4
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Proof. By applying Lemma 3.2.6 and Lemma 3.2.8, we get

χ(G4; λ) = (λ− 2)χ(G3; λ)

= (λ− 2)λ(λ− 1)(λ− 2)2

= λ(λ− 1)(λ− 2)3.

¤

The following lemma is used to prove the proposition on the chro-

matic polynomial for a triangulated n-ladder using the induction prin-

ciple.

Lemma 3.2.10. Let T2 be a triangulated 2-ladder. Then

χ(T2; λ) = λ(λ− 1)(λ− 2)(λ2 − 5λ + 7).

Proof. We use the deletion-contraction formula as shown in Fig-

ure 8. To ease notation, the diagrams in Figure 8 represent the chro-

matic polynomials of the graphs. Recall that a graph G and its sim-

plification have the same polynomial, see Corollary 3.2.2. Hence by

applying Lemma 3.2.9, Lemma 3.2.8 and Corollary 3.2.7, we get

χ(T2; λ) = (λ− 2)3λ(λ− 1)− (λ− 2)2λ(λ− 1) + (λ− 2)λ(λ− 1)

= (λ− 2)λ(λ− 1)(λ2 − 4λ + 4− λ + 2 + 1)

= λ(λ− 1)(λ− 2)(λ2 − 5λ + 7)

¤

The following is a recursive formula for the chromatic polynomial

of a triangulated n-ladder.
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=

= -

-

+

Figure 8

Proposition 3.2.11. Let Tn be a triangulated n-ladder. Then

χ(Tn; λ) = (λ− 2)(λ2 − 5λ + 7)χ(Tn−1; λ).

Proof. We define a tree diagram by using the deletion-contraction

formula at each step. Each graph in the diagram can be replaced by

two new graphs. The graph obtained by deletion is characterized by

a new subindex 1 added to the former label, and the graph obtained

by the contraction is characterized by a new subindex 2 added to the

former label. To ease notation the diagrams and their labels in Fig-

ure 9 represent the chromatic polynomials of the graphs. From the

tree diagram shown in Figure 9, and applying Proposition 2.2.3 and

Lemma 3.2.4, we get

χ(Tn−1; λ) = χ(G1222; λ).
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Tn-1

2

=

G1 G2

G11
G12

G21

G22

G121

G122

G1221

G1222

Tn=

Figure 9. A tree diagram for the chromatic polynomial

of a Tn.

Gathering equations on one side, to get the chromatic polynomial of

graph indexed G1, we have

χ(G122; λ) = χ(G1221; λ)− χ(G1222; λ)

= (λ− 1)χ(G1222; λ)− χ(G1222; λ)

= (λ− 2)χ(G1222; λ)

= (λ− 2)χ(Tn−1; λ).
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Hence

χ(G12; λ) = λ(G121; λ)− χ(G122; λ)

= (λ− 1)χ(G122; λ)− χ(G122; λ)

= (λ− 2)χ(G122; λ)

= (λ− 2)2χ(Tn−1; λ).

Thus

χ(G1; λ) = χ(G11; λ)− χ(G12; λ)

= (λ− 1)χ(G12; λ)− χ(G12; λ)

= (λ− 2)χ(G12; λ)

= (λ− 2)3χ(Tn−1; λ).

Gathering equations on the other side, to get the chromatic polynomial

of graphs indexed G21 and G22, we have

χ(G21; λ) = χ(G12; λ) = (λ− 2)2χ(Tn−1; λ).

χ(G22; λ) = χ(G122; λ) = (λ− 2)χ(Tn−1; λ).

Going back to Figure 9 and applying Proposition 2.2.3, we get

χ(Tn; λ) = χ(G1; λ)− χ(G2; λ)

= χ(G1; λ)− χ(G21; λ) + χ(G22; λ)

= (λ− 2)3χ(Tn−1; λ)λ)

− (λ− 2)2χ(Tn−1; λ) + (λ− 2)χ(Tn−1; λ)

= (λ− 2)[(λ− 2)2 − (λ− 2) + 1]χ(Tn−1; λ)

= λ(λ− 1)(λ− 2)(λ2 − 5λ + 7)χ(Tn−1; λ)

¤
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This is one of the main results of this chapter

Proposition 3.2.12. Let Tn be a triangulated n-ladder for n > 1.

Then

χ(Tn; λ) = λ(λ− 1)(λ− 2)n−1(λ2 − 5λ + 7)n−1.

Proof. We use induction principle on n to prove this proposition.

The base case for n = 2 is given by the Lemma 3.2.10. That is

χ(T2; λ) = λ(λ− 1)(λ− 2)(λ2 − 5λ + 7).

Hence the proposition is true for the base case. Let us assume that the

assumption is true for some n = k and k > 2. Then

χ(Tk; λ) = λ(λ− 1)(λ− 2)k−1(λ2 − 5λ + 7)k−1.

Now consider the case when n = k + 1. We apply Proposition 3.2.11

to get

χ(Tk+1; λ) = (λ− 2)(λ2 − 5λ + 7)χ(Tk; λ).

Now by induction hypothesis we get

χ(Tk+1; λ) = (λ− 2)(λ2 − 5λ + 7)χ(Tk; λ)

= (λ− 2)(λ2 − 5λ + 7)[λ(λ− 1)(λ− 2)k−1(λ2 − 5λ + 7)k−1]

= λ(λ− 1)(λ− 2)k(λ2 − 5λ + 7)k.

Hence the proposition is true for any n ¤

3.3. Coboundary polynomial of a triangulated ladder.

In this section, we develop a tree diagram for calculating the

coboundary polynomial of a triangulated n-ladder. We then, give a

recursive method of computing the coboundary polynomial of a trian-

gulated n-ladder. Finally establish the relationship existing between
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the the chromatic polynomial and the coboundary polynomial of a tri-

angulated n-ladder. Proposition 2.2.5 is refereed to as the deletion and

contraction formula for the coboundary polynomial.

3.3.1. Tree diagram of the coboundary polynomial of Tn.

The tree diagram we are going to build, is shown in Figure 10. We start

with a tree diagram of Tn. Each graph decomposes in two new graphs

according to the deletion and contraction principle. We label the new

graph by adding an index 1 to the former label, if this graph is resulting

from the deletion and we label the new graph by adding an index 2 to

the former label, if this graph is resulting from the contraction. Given

that the contraction and deletion formula reduces the number of edges

in Tn, and focusing uniquely on edges that are neither loops nor coloops.

This process ends once we reach graphs made of Tn−1 and possibly, with

loops or coloops. Our intention is to deduct a recursive relation linking

the coboundary polynomial of Tn to that of Tn−1. This approach, gives

rise to the recursion of the coboundary polynomial of Tn with three

terms namely Tn−1, T ′
n−1 and T”n−1 up to loop class and coloop class.

For clarity, we build the same tree diagram without graphs, as shown

in Figure 10 and Figure 11. We circle the corresponding labels by a

single circle for graphs having Tn−1, double circle for graphs having T ′
n−1

and bold circle for graphs having T”n−1. Since our tree diagram has

twenty-four endpoints, B(Tn; λ, S) has twenty four terms. After then,

we are going to give an example showing how to get the coefficient

(S − 1)k in each term of the polynomial B(Tn; λ, S) for example, the

term corresponding to the graph T211212. We will follow the bold line

in Figure 11.
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Figure 10. Deletion and contraction of the graph Tn
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Figure 11. Tree diagram for Tn
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Example 3.3.1.

B(Tn; λ, S) = B(T1; λ, S) + (S − 1)B(T2;λ,S)

= B(T1; λ, S) + (S − 1)B(T21;λ,S)

+ S − 1)2B(T22; λ, S)

= B(T1; λ, S) + (S − 1)B(T211;λ,S)

+ (S − 1)2B(T212; λ, S) + (S − 1)2B(T22; λ, S)

= B(T1; λ, S) + (S − 1)(2111; λ, S)

+ (S − 1)2B(T2112;λ,S)

+ (S − 1)2B(T212; λ, S) + (S − 1)2B(T22; λ, S)

= B(T1; λ, S) + (S − 1)(2111; λ, S)

+ (S − 1)2B(T21121;λ,S)

+ (S − 1)3B(T21122; λ, S) + (S − 1)2B(T212; λ, S)

+ (S − 1)2B(T22; λ, S)

= B(T1; λ, S) + (S − 1)(2111; λ, S)

+ (S − 1)2B(T211211; λ, S) + (S − 1)3B(T211212;λ,S)

+ (S − 1)3B(T21122; λ, S)

+ (S − 1)2B(T212; λ, S) + (S − 1)2B(T22; λ, S).

Now, we observe that the endpoints of our tree diagram represent

the terms of B(Tn; λ, S). Each term has a factor (S−1)k where k is the

number of indices 2 in the labeling of the graph at that point. Recall

that index 2 correspond to the operation of contraction. Following

the deletion and contraction formula again, recall that the presence

of a loop gives a factor S and the presence of a coloop gives a factor
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(S + λ − 1). According to the classification of our graphs in three

categories, we can split B(Tn; λ, S) in three polynomials. We group all

terms in B(Tn−1; λ, S) and denote them by

Ψ1(λ, S) = ϕ1(λ, S)B(Tn−1; λ, S).

We group all terms in B(T ′
n−1; λ, S) and denote them by

Ψ2(λ, S) = ϕ2(λ, S)B(T ′
n−1; λ, S).

Finally we group all terms in B(T”n−1; λ, S) and denote them by

Ψ3(λ, S) = ϕ3(λ, S)B(T ′′
n−1; λ, S).

Hence we can express the coboundary polynomial of Tn as a sum of

Ψ1(λ, S), Ψ2(λ, S) and Ψ3(λ, S) as follows:

B(Tn; λ, S) = Ψ1(λ, S) + Ψ2(λ, S) + Ψ3(λ, S).(3.3.1)

Now we collect the terms of B(Tn−1; λ, S) from the tree diagrams in

Figure 10 and Figure 11 and summarize them in the table form as

shown in Figure 12. We now state and prove a lemma on the expression

of Ψ1(λ, S).

Lemma 3.3.2. Let Tn be a triangulated n-ladder and let

B(Tn−1; λ, S) be the coboundary polynomial of Tn−1. Then

Ψ1(λ, S) = [(S + λ− 1)3 + 3(S + λ− 1)2(S − 1)

+ S(S + λ− 1)(S − 1)2 + 2(S + λ− 1)(S − 1)2]B(Tn−1; λ, S),

where Ψ1(λ, S) is a polynomial in λ and S.

Proof. Recall that Ψ1(λ, S) = ϕ1(λ, S)B(Tn−1; λ, S) and refer to

the following table which summarizes the result in Figure 12. Hence

the required result ¤
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Figure 12. Table for B(Tn−1; λ, S)

Notation 3.3.3. We use the following notation in the next tableau.

I= graph number.

II= number of terms.

III= number of index 2.

IV= number of loops.

V=number of coloops ’

I II III Iv V corresponding term

1 1 0 0 3 1(S + λ− 1)3

2,3,5 3 1 0 2 3(S + λ− 1)2(S − 1)

4,6 2 2 0 1 2(S + λ− 1)(S − 1)2

7 1 2 1 1 1S(S + λ− 1)(S − 1)2
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Now we collect the terms of B(T ′
n−1; λ, S) from the tree dia-

grams in Figure 10 and Figure 11 and summarize them in the table

form as shown in Figure 13. We now state and prove a lemma on the

expression of Ψ2(λ, S).
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number
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label
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211211 21211

Figure 13. Table for B(T ′
n−1; λ, S)

Lemma 3.3.4. Let Tn be a triangulated n-ladder and let

B(T ′
n−1; λ, S) be the coboundary polynomial of T ′

n−1. Then

Ψ2(λ, S) = [(S + λ− 1)2(S − 1) + 4(S + λ− 1)(S − 1)2

+ 2S(S + λ− 1)(S − 1)2 + 3S(S − 1)3 + S2(S − 1)3

+ 2(S − 1)3]B(T ′
n−1; λ, S),

where Ψ2(λ, S) is a polynomial in λ and S.
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Proof. Recall that Ψ2(λ, S) = ϕ2(λ, S)B(T ′
n−1; λ, S) and refer to

the following table which summarizes the result in Figure 13. Hence

the result ¤

Notation 3.3.5. We use the following notation in the next tableau.

I= graph number.

II=number of terms.

III=number of index 2.

IV= number of loops.

V= number of coloops.

I II III IV V corresponding term

i 1 1 0 2 (S + λ− 1)2(S − 1)

ii,iv,viii,xiii 4 2 0 1 4(S + λ− 1)(S − 1)2

iii,vii 2 2 1 1 2S(S + λ− 1)(S − 1)2

vi,x,xi 3 3 1 0 3S(S − 1)3

xii 1 3 2 0 1S2(S − 1)3

v,ix 2 3 0 0 2(S − 1)3

Now we collect the terms of B(T ′′
n−1; λ, S) from the tree dia-

grams in Figure 10 and Figure 11 and summarize them in the table

form as shown in Figure 14. We now state and prove a lemma on the

expression of Ψ3(λ, S).

Lemma 3.3.6. Let Tn be a triangulated n-ladder and let

B(T”n−1; λ, S) be the coboundary polynomial of T”n−1. Then

Ψ3(λ, S) = [(S − 1)3 + 2S(S − 1)3 + S2(S − 1)3]B(T ′′
n−1; λ, S)

where Ψ3(λ, S) is a polynomial in λ and S.
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Figure 14. Table for B(T”n−1; λ, S)

Proof. Recall that Ψ3(λ, S) = ϕ3(λ, S)B(T”n−1; λ, S) and refer

to the following table which summarizes the result in Figure 14. Hence

the result

Notation 3.3.7. We use the following notation in the next tableau.

I= graph number.

II=number of terms.

III=number of index 2.

IV= number of loops.

V= number of coloops.

¤

I II III IV V corresponding term

d 1 3 2 0 S2(S − 1)3

a,c 2 3 1 0 2S(S − 1)3

b 1 3 0 0 (S − 1)3

Now we are able to state and prove one of the main results of
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this chapter. Recall that Tn−1 is a triangulated (n− 1)-ladder, T ′
n−1 is

a triangulated (n− 1)-ladder whose last rung is replaced by 2 parallel

edges and T”n−1 is a triangulated (n − 1)-ladder whose last rung is

replaced by 3 parallel edges.

Proposition 3.3.8. Let Tn be a triangulated n-ladder and

B(Tn; λ, S) be the coboundary polynomial of Tn. Then

B(Tn; λ, S) = [(S + 6)(S − 1)3 + (λS + 11λ)(S − 1)2λ)

+ 6λ2(S − 1) + λ3]B(Tn−1; λ, S)

+ [(S2 + 5S + 7)(S − 1)3 + (2Sλ + 6λ)(S − 1)2λ)

+ λ2(S − 1)]B(T ′
n−1; λ, S)

+ [(S2 + 2S + 1)(S − 1)3]B(T”n−1; λ, S).

Proof. Recall that the coboundary polynomial of Tn can be writ-

ten as B(Tn; λ, S) = Ψ1(λ, S) + Ψ2(λ, S) + Ψ3(λ, S) by Equation 3.3.1.

Now we substitute Ψ1(λ, S) with the formula in Lemma 3.3.2, Ψ2(λ, S)

with the formula in Lemma 3.3.4 and Ψ3(λ, S) with the formula in

Lemma 3.3.6 to get:

B(Tn; λ, S) = Ψ1(λ, S) + Ψ2(λ, S) + Ψ3(λ, S)

= [(S + λ− 1)3 + 3(S + λ− 1)2(S − 1)

+ S(S + λ− 1)(S − 1)2

+ 2(S + λ− 1)(S − 1)2]B(Tn−1; λ, S)

+ [(S + λ− 1)2(S − 1) + 4(S + λ− 1)(S − 1)2

+ 2S(S + λ− 1)(S − 1)2

+ 3S(S − 1)3 + S2(S − 1)3 + 2(S − 1)3]B(T ′
n−1; λ, S)

+ [(S − 1)3 + 2S(S − 1)3 + S2(S − 1)3]B(T ′′
n−1; λ, S).
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Now expanding and rearranging in power of (S − 1), we get

B(Tn; λ, S) = [(S + 6)(S − 1)3S

+ (λ11λ)(S − 1)2 + 6λ2(S − 1)S

+ λ3]B(Tn−1; λ, S)

+ [(S2 + 5S + 7)(S − 1)3 + (2Sλ + 6λ)(S − 1)2

+ λ2(S − 1)]B(T ′
n−1; λ, S)

+ [(S2 + 2S + 1)(S − 1)3]B(T ′′
n−1; λ, S)

¤

3.3.2. Examples of coboundary polynomials. In this subsec-

tion we compute the coboundary polynomial of a triangulated 2-ladder

using deletion and contraction formula. Then we calculate the same

polynomial using Proposition 2.2.5 and show that the two are equal

verifying our result.

Lemma 3.3.9. Let G be a coloop. Then

B(G; λ, S) = S + λ− 1.

Proof. From Proposition 2.2.5 ¤

Lemma 3.3.10. Let G be a graph on two vertices with two parallel

edges only. Then

B(G; λ, S) = S2 + λ− 1.

Proof. We refer to Figure 15 for the computation. Hence by ap-
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= +(s-1)

Figure 15

plying Proposition 2.2.5 and Lemma 3.3.9 we get

B(G; λ, S) = S + λ− 1 + S(S − 1)

= S + λ− 1 + S2 − S

= S2 + λ− 1

¤

Lemma 3.3.11. Let G be a graph on two vertices with three parallel

edges only. Then

B(G; λ, S) = S3 + λ− 1.

Proof. We refer to Figure 16 for the computation. . Hence by

=
+(s-1)

Figure 16

applying Proposition 2.2.5 and Lemma 3.3.10 we get

B(G; λ, S) = S2 + λ− 1 + S2(S − 1)

= S2 + λ− 1 + S3 − S2

= S3 + λ− 1
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¤

Lemma 3.3.12. Let H1 be a 3-cycle. Then

B(H1; λ, S) = S3 + 3(λ− 1)S + λ(λ− 3) + 2.

Proof. We use the deletion-contraction formula for coboundary

polynomial as shown in Figure 17. Hence by applying Proposition 2.2.5

= (s-1)+

Figure 17

and Lemma 3.3.10 we get

B(H1; λ, S) = (S + λ− 1)2 + (S − 1)(S2 + λ− 1)

= S3 + 3(λ− 1)S + λ(λ− 3) + 2

¤

Figure 18. H2
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Lemma 3.3.13. Let H2 be the graph shown in Figure 18. Then

B(H2; λ, S) = S4 + (λ− 1)S2 + 2(λ− 1)S + λ(λ− 3) + 2.

Proof. We use the deletion-contraction formula for the cobound-

ary polynomial as shown in Figure 19. Hence by applying Proposi-

= (s-1)+

Figure 19

tion 2.2.5, Lemma 3.3.10 and Lemma 3.3.12 we get

B(H2; λ, S) = [S3 + 3(λ− 1)S + λ(λ− 3) + 2]

+ S(S − 1)(S2 + λ− 1)

= S4 + (λ− 1)S2 + 2(λ− 1)S + λ(λ− 3) + 2

¤

Figure 20. H3

Lemma 3.3.14. Let H3 be the graph shown in Figure 20. Then

B(H3; λ, S) = S5 + 2(λ− 1)S2 + (λ− 1)S + λ(λ− 3) + 2.
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Proof. We use the deletion-contraction formula for the cobound-

ary polynomial as shown in Figure 21. Hence by applying Proposi-

= (s-1)+

Figure 21

tion 2.2.5, Lemma 3.3.11 and Lemma 3.3.13 we get

B(H3; λ, S) = [S4 + (λ− 1)S2 + 2(λ− 1)S + λ(λ− 3) + 2]

+ S(S − 1)(S3 + λ− 1)

= S5 + 2(λ− 1)S2 + (λ− 1)S + λ(λ− 3) + 2

¤

Figure 22. H4

Lemma 3.3.15. Let H4 be the graph shown in Figure 22. Then

B(H4; λ, S) = S6 + (λ− 1)S3 + (λ− 1)S2 + (λ− 1)S + λ(λ− 3) + 2.

Proof. We use the deletion-contraction formula for the cobound-

ary polynomial as shown in Figure 23. Hence by applying Proposi-
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= (s-1)+

Figure 23

tion 2.2.5, Lemma 3.3.11 and Lemma 3.3.14 we get

B(H4; λ, S) = [S5 + 2(λ− 1)S2

+ (λ− 1)S + λ(λ− 3) + 2] + S2(S − 1)(S3 + λ− 1)

= S6 + (λ− 1)S3 + (λ− 1)S2 + (λ− 1)S

+ λ(λ− 3) + 2

¤

Figure 24. H5

Lemma 3.3.16. Let H5 be the graph shown in Figure 24. Then

B(H5; λ, S) = S5+2(λ−1)S3+4(λ−1)S2+(λ−1)(5λ−9)S+(λ−2)2(λ−1).

Proof. We use the deletion-contraction formula for the cobound-

ary polynomial as shown in Figure 25. Hence by applying Proposi-
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= (s-1)+

Figure 25

tion 2.2.5, Lemma 3.3.12 and Lemma 3.3.13 we get

B(H5; λ, S) = [(S + λ− 1)(S3

+ 3(λ− 1)S + λ(λ− 3) + 2]

+ [(S − 1)(S4 + (λ− 1)S2 + 2(λ− 1)S

+ λ(λ− 3) + 2)]

= S5 + 2(λ− 1)S3 + 4(λ− 1)S2

+ (λ− 1)(5λ− 9)S + (λ− 2)2(λ− 1).

¤

Figure 26. H6
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Lemma 3.3.17. Let H6 be the graph shown in Figure 26. Then

B(H6; λ, S) = S6 + (λ− 1)S4 + 3(λ− 1)S3 + λ(λ− 1)S2

+(4λ− 7)(λ− 1)S + (λ− 2)2(λ− 1).

Proof. We use the deletion-contraction formula for the cobound-

ary polynomial as shown in Figure 27. Hence by applying Proposi-

= (s-1)+

Figure 27

tion 2.2.5, Lemma 3.3.13 and Lemma 3.3.16 we get

B(H6; λ, S) = [S5 + 2(λ− 1)S3 + 4(λ− 1)S2

+ (λ− 1)(5λ− 9)s + (λ− 2)2(λ− 1)]

+ [S(S − 1)(S4 + (λ− 1)S2

+ 2(λ− 1)S + λ(λ− 3) + 2)]

= S6 + (λ− 1)S4 + 3(λ− 1)S3 + λ(λ− 1)S2

+ (4λ− 7)(λ− 1)S + (λ− 2)2(λ− 1)

¤
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Figure 28. H9

Lemma 3.3.18. Let H9 be the graph shown in Figure 28. Then

B(H9; λ, S) = S7 + 2(λ− 1)S4 + 3(λ− 1)S3

+ λ(λ− 1)S2

+ 5(λ− 2)(λ− 1)S + (λ− 3)λ− 2)(λ− 1).

Proof. We use the deletion-contraction formula for the cobound-

ary polynomial as shown in Figure 29. Hence by applying Proposi-

= +(s-1)

Figure 29
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tion 2.2.5, Lemma 3.3.17 and Lemma 3.3.15 we get

B(H9; λ, S) = [S6 + (λ− 1)S4 + 3(λ− 1)S3

+ λ(λ− 1)S2

+ (4λ− 7)(λ− 1)S

+ (λ− 2)2(λ− 1)]

+ (S − 1)[S6 + (λ− 1)S3 + (λ− 1)S2 + (λ− 1)S

+ λ(λ− 3) + 2]

= S7 + 2(λ− 1)S4 + 3(λ− 1)S3 + λ(λ− 1)S2

+ 5(λ− 2)(λ− 1)S + (λ− 3)λ− 2)(λ− 1)

¤

Figure 30. H10

Lemma 3.3.19. Let H10 be the graph shown in Figure 30. Then

B(H10; λ, S) = S7 + 2(λ− 1)S5

+ 4(λ− 1)S4 + (3λ− 1)(λ− 1)S3 + 4(3λ− 5)(λ− 1)S2

+ (7λ− 12)(λ− 2)(λ− 1)S

+ (λ− 2)3(λ− 1).
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Proof. We use the deletion-contraction formula for the cobound-

ary polynomial as shown in Figure 31. Hence by applying Proposi-

= (s-1)+

Figure 31

tion 2.2.5, Lemma 3.3.16 and Lemma 3.3.17 we get

B(H10; λ, S) = (S + λ− 1)[S5

+ 2(λ− 1)S3 + 4(λ− 1)S2

+ (λ− 1)(5λ− 9)S + (λ− 2)2(λ− 1)]

+ (S − 1)[S6 + (λ− 1)S4 + 3(λ− 1)S3 + λ(λ− 1)S2

+ (4λ− 7)(λ− 1)S + (λ− 2)2(λ− 1)]

= S7

+ 2(λ− 1)S5 + 4(λ− 1)S4

+ (3λ− 1)(λ− 1)S3

+ 4(3λ− 5)(λ− 1)S2

+ (7λ− 12)(λ− 2)(λ− 1)S + (λ− 2)3(λ− 1)
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¤

Now we are able to give the coboundary polynomial for T2 using

deletion-contraction formula. Then we compare it with the coboundary

polynomial for T2 using Proposition 2.2.5.

Example 3.3.20. Let T2 be the triangulated 2-ladder. We use the

deletion-contraction formula for the coboundary polynomial as shown

in Figure 32. We observe that

= +(s-1)

Figure 32

B(T2; λ, S) = B(H10; λ, S) + (S − 1)B(H9; λ, S).
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But we know B(H10; λ, S) and B(H9; λ, S) by Lemma 3.3.19 and

Lemma 3.3.18 respectively. Hence we substitute to get

B(T2; λ, S) = B(H10; λ, S) + (S − 1)B(H9; λ, S)

= [S7 + 2(λ− 1)S5 + 4(λ− 1)S4

+ (3λ− 1)(λ− 1)S3 + 4(3λ− 5)(λ− 1)S2

+ (7λ− 12)(λ− 2)(λ− 1)S

+ (λ− 2)3(λ− 1)]

+ (S − 1)[S7 + 2(λ− 1)S4 + 3(λ− 1)S3

+ λ(λ− 1)S2

+ 5(λ− 2)(λ− 1)S + (λ− 3)λ− 2)(λ− 1)]

= S8 + 4(λ− 1)S5 + 5(λ− 1)S4

+ 4(λ− 1)2S3 + 2(8λ− 15)(λ− 1)S2

+ 4(2λ− 5)(λ− 2)(λ− 1)S

+ (λ2 − 5λ + 7)(λ− 2)(λ− 1).

Let T2 be the triangulated 2-ladder. We use the Proposition 2.2.5

to compute the coboundary polynomial of T2. We get

B(T2; λ, S) = [(S + 6)(S − 1)3 + (λS + 11λ)(S − 1)2

+ 6λ2(S − 1) + λ3]B(T1; λ, S)

+ [(S2 + 5S + 7)(S − 1)3 + (2Sλ + 6λ)(S − 1)2

+ λ2(S − 1)]B(T ′
1; λ, S)

+ [(S2 + 2S + 1)(S − 1)3]B(T”1; λ, S).

In this case T1 is a coloop, T ′
1 is a parallel pair of edges and T”1 is a

bunch of three parallel edges. The coboundary polynomials B(T1; λ, S)
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is given by Lemma 3.3.9, B(T ′
1; λ, S) is given by Lemma 3.3.10 and

B(T”1; λ, S) is given by Lemma 3.3.11. Hence

B(T2; λ, S) = [(S + 6)(S − 1)3 + (λS + 11λ)(S − 1)2

+ 6λ2(S − 1) + λ3][S + λ− 1]

+ [(S2 + 5S + 7)(S − 1)3 + (2Sλ + 6λ)(S − 1)2

+ λ2(S − 1)][S2 + λ− 1]

+ [(S2 + 2S + 1)(S − 1)3][S3 + λ− 1]

= S8 + 4(λ− 1)S5 + 5(λ− 1)S4

+ 4(λ− 1)2S3 + 2(8λ− 15)(λ− 1)S2

+ 4(2λ− 5)(λ− 2)(λ− 1)S

+ (λ2 − 5λ + 7)(λ− 2)(λ− 1).

Thus the coboundary polynomial B(T2; λ, S) using deletion and con-

traction method is the same as the one found using Proposition 3.3.8.

3.3.3. Chromatic and coboundary polynomials. In this sub-

section we show the relationship existing between the chromatic poly-

nomial of a triangulated n-ladder and the coboundary polynomial of a

triangulated n-ladder. For this reason we need three lemmas, and the

main proposition is proved by the use of the induction method.

Lemma 3.3.21. Let Tn be a triangulated n-ladder. Then

B(Tn; λ, 0) = B(T ′
n; λ, 0),

where T ′
n is a graph obtained from Tn by replacing the last rung by two

parallel edges.
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Proof. The result follows from the deletion-contraction as shown

in Figure 33. To ease notation, each diagram in the Figure 33 represents

the coboundary polynomial of that graph ¤

Lemma 3.3.22. Let Tn be a triangulated n-ladder. Then

B(Tn; λ, 0) = B(T ′′
n ; λ, 0)

where T”n is a graph obtained from Tn by replacing the last rung by

three parallel edges.

Proof. The result follows from the deletion-contraction as shown

in Figure 34. To ease notation, each diagram in the Figure 34 represents

the coboundary polynomial of that graph ¤

Lemma 3.3.23. Let B(Tn; λ, S) be a coboundary polynomial of the

triangulated n-ladder Tn, then

B(Tn; λ, 0) = (λ− 2)(λ2 − 5λ + 7)B(Tn−1; λ, 0).

Proof. We know by Proposition 3.3.8 that:

B(Tn; λ, S) = [(S + 6)(S − 1)3 + (λS

+ 1λ)(S − 1)2 + 6λ2(S − 1)

+ λ3]B(Tn−1; λ, S) + [(S2 + 5S + 7)(S − 1)3

+ (2Sλ + 6λ)(S − 1)2 + λ2(S − 1)]B(T ′
n−1, λ, S)

+ [(S2 + 2S + 1)(S − 1)3]B(T ′′
n−1; λ, S).

If we substitute S = 0, we get:

B(Tn; λ, 0) = (λ3 − 6λ2 + 11λ− 6)B(Tn−1; λ, 0)

+ (−λ3 + 6λ2 − 7)B(T ′
n−1, λ, 0)

+ (−1)B(T ′′
n−1; λ, 0).
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But by lemmas [3.3.21 and 3.3.22], we know that:

B(Tn−1; λ, 0) = B(T ′
n−1; λ, 0) = B(T ′′

n−1; λ, 0).

Hence we get:

B(Tn; λ, 0) = (λ− 2)(λ2 − 5λ + 7)B(Tn−1; λ, 0).

¤

Now we can exhibit the proposition verifying the relationship exist-

ing between the coboundary polynomial and the chromatic polynomial

of a triangulated ladder.

Proposition 3.3.24. Let B(Tn; λ, S) be a coboundary polynomial

of the triangulated n-ladder Tn, then

χ(Tn; λ) = λB(Tn; λ, 0).

Proof. The proof of this proposition is done by the induction

method on the number n. For n = 1, we know by Lemma 3.3.9 that

B(T1; λ, 0) = λ− 1.

and we know that: T1 is a coloop; a tree on two vertices,

χ(T1; λ) = λ(λ− 1);

therefore,

χ(T1; λ) = λ(B(T1; λ, 0).

Hence we proved the base case. Now suppose that the proposition is

true for any positive integer k, that is :

χ(Tk; λ) = λB(Tk; λ, 0),
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and show that the proposition is true for k + 1. If we multiply both

sides of the previous equation by (λ− 2)(λ2 − 5λ + 7), we have:

χ(Tk; λ)(λ− 2)(λ2 − 5λ + 7) = λB(Tk; λ, 0)(λ− 2)(λ2 − 5λ + 7).

Respectively, we use Proposition 3.2.11 and Lemma 3.3.23 for the first

and the second member of the previous equation and we obtain:

χ(Tk+1; λ) = λB(Tk+1; λ, 0).

Therefore, we verified the induction hypothesis. Hence, the proposition

is true for any positive integer n as required ¤



CHAPTER 4

Tutte polynomial and link associated to a

Triangulated ladder.

In this chapter, we compute the recursive expression of the Tutte

polynomials by means of a tree diagram, and we give some examples.

We discuss also on links associated to a triangulated ladder, and close

it by giving its component number.

4.1. Tutte polynomial for a triangulated n-ladder.

In this section we give a recursive method of the Tutte polynomial of

a triangulated n-ladder, using a suitable tree diagram and appropriate

tableaux .We give also explicit expressions of the Tutte polynomials of

certain graphs, and we verify our result for T2.

Example 4.1.1. Here, we give some examples of Tutte polynomials

of well known classes of graphs.

(1) If tn is a tree with n vertices, then

T (tn; x, y) = xn−1.

(2) If Cn is a cycle with n vertices, then

T (Cn; x, y) = xn−1 + xn−1 + . . . + x + y.

(3) If G is a graph made of n parallel edges, then

T (G; x, y) = x + y + . . . + yn−2 + yn−1.

57
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4.1.1. Tree diagram of the Tutte polynomial. In this section

we are going to give a tree diagram of the Tutte polynomial of a trian-

gulated n-ladder. We start the tree diagram with the graph Tn. Each

graph decomposes in two new graphs according to the deletion and

contraction relations. We label the new graph by adding an index 1

to the former label, if this graph is resulting from the deletion and we

label the new graph by adding an index 2 to the former label, if this

graph is resulting from the contraction. Given that the contraction and

deletion operations reduce the number of edges and focusing uniquely

on edges that are neither loops nor coloops, this process ends once we

reach graphs having the structure of Tn−1 up to parallel class and pos-

sibly, with loops or coloops. A general tree diagram of a triangulated

n-ladder is given in Figure 1. Our intention is to deduct a recursive

relation linking the Tutte polynomial of Tn to that of Tn−1. Recall that

T ′
n−1 and T”n−1 denote a triangulated (n − 1)-ladder, Tn−1, with the

last rung being replaced by 2 parallel rungs and 3 parallel rungs re-

spectively. Then this approach, gives the Tutte polynomial of Tn in

terms of the Tutte polynomials of Tn−1, T ′
n−1 and T”n−1 up to simpli-

fication. For clarity, we build the same tree diagram of Tn as shown in

Figure 1, but this time we replace the graphs corresponding to Tn−1 by

a single circle, corresponding to T ′
n−1 by double circles and correspond-

ing to T”n−1 by a bold single circle as shown in Figure 2. The Tutte

polynomial, T (Tn; x, y) has twenty four terms since our tree diagram

has twenty-four endpoints. This will be simplified later. Hence we can

write the Tutte polynomial of Tn as follows:
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T (Tn; x, y) = [T (T1111; x, y) + T (T11211; x, y) + T (T12111; x, y)

+ T (T121211; x, y) + T (T21111; x, y) + T (T211211; x, y)

+ T (T21211; x, y)] + [T (T1112; x, y) + T (T11212; x, y)

+ T (T1122; x, y) + T (T12112; x, y) + T (T1221; x, y)

+ T (T121212; x, y) + T (T12122; x, y) + T (T21112; x, y)

+ T (T22111; x, y) + T (T21122; x, y) + T (T211212; x, y)

+ T (T21212; x, y) + T (T2122; x, y)]

+ [T (T1222; x, y) + T (T22112; x, y) + T (T2212; x, y)

+ T (T222; x, y].

According to the classification of the simplified minors of Tn in three

categories, Tn−1, T ′
n−1 and T”n−1 we can write T (Tn; x, y) as a sum of

three polynomials. We group all terms in T (Tn−1; x, y) and denote it

by

Ψ1(x, y) = ϕ1(x, y)(T (Tn−1; x, y)).

Then we group all terms in T (T ′
n−1; x, y) and denote it by

Ψ2(x, y) = ϕ2(x, y)(T (T ′
n−1; x, y))

and finally we group all terms in (T”n−1; x, y) and we denote it by

Ψ3(x, y) = ϕ3(x, y)(T (T ′′
n−1; x, y)).

Then we have

T (Tn; x, y) = Ψ1(x, y) + Ψ2(x, y) + Ψ3(x, y).

The corresponding graphs to Tn−1, T ′
n−1 and T”n−1 can be collected in

three tables as shown in Figures [3, 4, 5] respectively, highlighting loops
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and coloops. Following the deletion-contraction formula, we recall that

a loop can be deleted and the Tutte polynomial of the minor multiplied

by y and similarly for an isthmus where the Tutte polynomial of the

minor is multiplied by x. We need the following three lemmas before

giving the recursive formula of the Tutte polynomial of a triangulated

n-ladder. We begin by gathering terms in T (Tn−1; x, y) as shown in

Figure 3.

n-2

n-1n+2

n+3 n-2

n-1n+2

n+3n-2

n-1n+2

n+3
n-2

n-1n+2

n+3

n-2

n-1n+2

n+3 n-2

n-1n+2

n+3
n-2

n-1n+2

n+3

number

figure

label

number

figure

label

1 2 3 4

1111
11211 12111 121211

5 6 7

21111

211211 21211

Figure 3. Table for Tn−1

Lemma 4.1.2. Let Ψ1(x, y) be a two variable polynomial and Let

T (Tn−1; x, y) be the Tutte polynomial of a triangulated (n − 1)-ladder.

Then

Ψ1(x, y) = [x3 + 3x2 + xy + 2x]T (Tn−1; x, y).

Proof. The following table analyzes the result of the terms of

T (Tn−1; x, y) shown in Figure 3. ¤



4.1. TUTTE POLYNOMIAL FOR A TRIANGULATED n-LADDER. 63

number of terms with loop with coloop corresponding term

1 0 3 1x3

3 0 2 3x2

2 0 1 2x

1 1 1 1xy

We now gather terms in T (T ′
n−1; x, y) as shown in Figure 4.

n-2

n-1n+2

n+3 n-2

n-1n+2

n+3n-2

n-1n+2

n+3
n-2

n-1n+2

n+3

n-2

n-1n+2

n+3 n-2

n-1n+2

n+3
n-2

n-1n+2

n+3

number

figure

label

number

figure

label

1 2 3 4

1111
11211 12111 121211

5 6 7

21111

211211 21211

Figure 4. Table for T ′
n−1

Lemma 4.1.3. Let Ψ2(x, y) be a two variable polynomial and Let

T (T ′
n−1; x, y) be the Tutte polynomial of a triangulated (n − 1)-ladder

which the last rung is replaced by two parallel edges. Then

Ψ2(x, y) = [x2 + 4x + 2xy + 3y + y2 + 2]T (T ′
n−1; x, y).
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Proof. See the definition of Ψ2(x, y) and the next table analyzing

the results in Figure 4 ¤

number of terms with loop with coloop corresponding term

1 0 2 x2

4 0 1 4x

2 1 1 2xy

3 1 0 3y

1 2 0 1y2

2 0 0 2

Finally we gather the terms in T (T”n−1; x, y) as shown in Fig-

ure 5.

n-2

n-1n+2

n+3 n-2

n-1n+2

n+3 n-2

n-1n+2

n+3n-2

n-1n+2

n+3

b c dnumber

figure

label 1222 22112 2212 222

a

Figure 5. Table for T”n−1

Lemma 4.1.4. Let Ψ3(x, y) be a two variable polynomial and Let

T (T”n−1; x, y) be the Tutte polynomial of a triangulated (n− 1)-ladder

which the last rung is replaced by 3 parallel edges. Then

Ψ3(x, y) = [y2 + 2y + 1]T (T”n−1; x, y).
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Proof. See the definition of Ψ3(x, y) and the following table ana-

lyzing the results in Figure 5 ¤

number of terms with loop with coloop corresponding term

1 2 0 y2

2 1 0 2y

0 0 0 1

Now we are able to state and prove the main result of this chapter.

Recall that T ′
n and T”n are obtained from Tn by replacing the last

rung by two and three parallel edges respectively.

Proposition 4.1.5. Let Tn be a triangulated n-ladder. Then the

Tutte polynomial

T (Tn; x, y) = [x3 + 3x2 + xy + 2x]T (Tn−1; x, y)

+ [x2 + 4x + 2xy + 3y + y2 + 2]T (T ′
n−1; x, y)

+ [y2 + 2y + 1]T (T”n−1; x, y).

Proof. We have seen that

T (Tn; x, y) = Ψ1(x, y) + Ψ2(x, y) + Ψ3(x, y).

Therefore by applying Lemma 4.1.2, Lemma 4.1.3 and Lemma 4.1.4 we

get

T (Tn; x, y) = [x3 + 3x2 + xy + 2x]T (Tn−1; x, y)

+ [x2 + 4x + 2xy + 3y + y2 + 2]T (T ′
n−1; x, y)

+ [y2 + 2y + 1]T (T”n−1; x, y)

¤
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4.1.2. Examples of Tutte polynomials. In this subsection we

compute the Tutte polynomial of a triangulated 2-ladder using deletion

and contraction formula. Then we calculate the same polynomial using

Proposition 4.1.5 and show that the two are equal verifying our result.

Here, we state the next lemma without proof, for further details, see

Brylswski (1972).

Lemma 4.1.6. Let G be a coloop. Then

T (G; x, y) = x.

Lemma 4.1.7. Let G be a graph on two vertices with two parallel

edges only. Then

T (G; x, y) = x + y.

Proof. We refer to Figure 6 for the computation. Hence by ap-= +
Figure 6

plying Proposition 2.2.2 and Lemma 4.1.6 we get

T (G; x, y) = x + y

¤

Lemma 4.1.8. Let G be a graph on two vertices with three parallel

edges only. Then

T (G; x, y) = x + y + y2.
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Figure 7

Proof. We refer to Figure 7 for the computation. Hence by ap-

plying Proposition 2.2.2 and Lemma 4.1.7 we get

T (G; x, y) = x + y + y2

¤

Lemma 4.1.9. Let H1 be a 3-cycle. Then

T (H1; x, y) = x2 + x + y.

Proof. We use the deletion-contraction formula for Tutte polyno-

mial as shown in Figure 8. Hence by applying Proposition 2.2.2 and

= +

Figure 8
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Lemma 4.1.7 we get

T (H1; x, y) = x2 + x + y

¤

Figure 9. H2

Lemma 4.1.10. Let H2 be the graph shown in Figure 9. Then

T (H2; x, y) = [x2 + x + y] + y(x + y).

Proof. We use the deletion-contraction formula for the Tutte

polynomial as shown in Figure 10. Hence by applying Proposition 2.2.2,

= +

Figure 10

Lemma 4.1.7 and Lemma 4.1.9 we get

T (H2; x, y) = [x2 + x + y] + y(x + y)

¤
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Lemma 4.1.11. Let H3 be the graph shown in Figure 11. Then

T (H3; x, y) = (x2 + x + y) + y(x + y) + y(x + y + y2).

Figure 11. H3

Proof. We use the deletion-contraction formula for the Tutte

polynomial as shown in Figure 12. Hence by applying Proposition 2.2.2,

= +

Figure 12

Lemma 4.1.8 and Lemma 4.1.10 we get

T (H3; x, y) = (x2 + x + y) + y(x + y) + y(x + y + y2)

¤

Lemma 4.1.12. Let H4 be the graph shown in Figure 13. Then

T (H4; x, y) = (x2 + x + y) + y(x + y) + (y + y2)(x + y + y2).
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Figure 13. H4

= +

Figure 14

Proof. We use the deletion-contraction formula for the Tutte

polynomial as shown in Figure 14. Hence by applying Proposition 2.2.2,

Lemma 4.1.8 and Lemma 4.1.11 we get

T (H4; x, y) = (x2 + x + y) + y(x + y) + (y + y2)(x + y + y2)

¤

Figure 15. H5
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Lemma 4.1.13. Let H5 be the graph shown in Figure 15. Then

T (H5; x, y) = (x + 1)(x2 + x + y) + y(x + y).

Proof. We use the deletion-contraction formula for the Tutte

polynomial as shown in Figure 16. Hence by applying Proposition 2.2.2,

= +

Figure 16

Lemma 4.1.9 and Lemma 4.1.10 we get

T (H5; x, y) = (x + 1)(x2 + x + y) + y(x + y)

¤

Figure 17. H6

Lemma 4.1.14. Let H6 be the graph shown in Figure 17. Then

T (H6; x, y) = (1 + x + y)(x2 + x + y) + (y + y2)(x + y).
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Proof. We use the deletion-contraction formula for the Tutte

polynomial as shown in Figure 18. Hence by applying Proposition 2.2.2,

= +

Figure 18

Lemma 4.1.10 and Lemma 4.1.13 we get

T (H6; x, y) = [(x + 1)(x2 + x + y) + y(x + y)]

+ y[(x2 + x + y) + y(x + y)]

= (1 + x + y)(x2 + x + y) + (y + y2)(x + y)

¤

Figure 19. H9
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Lemma 4.1.15. Let H9 be the graph shown in Figure 19. Then

T (H9; x, y) = (x+y+2)(x2+x+y)+(2y+y2)(x+y)+(y+y2)(x+y+y2).

Proof. We use the deletion-contraction formula for the Tutte

polynomial as shown in Figure 20. Hence by applying Proposition 2.2.2,

= +

Figure 20

Lemma 4.1.14 and Lemma 4.1.12 we get

T (H9; x, y) = [(1 + x + y)(x2 + x + y) + (y + y2)(x + y)]

+ [(x2 + x + y) + y(x + y) + (y + y2)(x + y + y2)]

= (x + y + 2)(x2 + x + y) + (2y + y2)(x + y)

+ (y + y2)(x + y + y2)

¤

Lemma 4.1.16. Let H10 be the graph shown in Figure 21. Then

T (H10; x, y) = (x2 + 2x + y + 1)(x2 + x + y) + (xy + y + y2)(x + y).

Proof. We use the deletion-contraction formula for the Tutte

polynomial as shown in Figure 22. Hence by applying Proposition 2.2.2,
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Figure 21. H10

= +

Figure 22

Lemma 4.1.13 and Lemma 4.1.14 we get

T (H10; x, y) = x[(x + 1)(x2 + x + y) + xy(x + y)]

+ [(1 + x + y)(x2 + x + y) + (y + y2)(x + y)]

= (x2 + 2x + y + 1)(x2 + x + y) + (xy + y + y2)(x + y)

¤
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Now we are able to give the Tutte polynomial for T2 using deletion-

contraction formula. Then we compare it with the Tutte polynomial

for T2 using Proposition 4.1.5.

Example 4.1.17. Let T2 be the triangulated 2-ladder. We use

the deletion-contraction formula for the Tutte polynomial as shown in

Figure 23. We observe that

= +

Figure 23

T (T2; x, y) = T (H10; x, y) + T (H9; x, y).

But we have T (H10; x, y) and T (H9; x, y) by Lemma 4.1.16 and

Lemma 4.1.15 respectively. Hence we substitute to get

T (T2; x, y) = T (H10; x, y) + T (H9; x, y)

= (x2 + 2x + y + 1)(x2 + x + y)

+ (xy + y + y2)(x + y)]

+ (x + y + 2)(x2 + x + y) + (2y + y2)(x + y)

+ (y + y2)(x + y + y2)]

= (x3 + 3x2 + xy + 2x)x

+ (x2 + 4x + 2xy + 3y + y2 + 2)(x + y)

+ (y2 + 2y + 1)(x + y + y2).
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Let T2 be the triangulated 2-ladder. We use the Proposition 4.1.5

to compute the Tutte polynomial of T2. We get

T (Tn; x, y) = [x3 + 3x2 + xy + 2x]T (Tn−1; x, y)

+ [x2 + 4x + 2xy + 3y + y2 + 2]T (T ′
n−1; x, y)

+ [y2 + 2y + 1]T (T ′′
n−1; x, y).

In this case T1 is a coloop, T ′
1 is a parallel pair of edges and T”1 is

a bunch of three parallel edges. The Tutte polynomials T (T1; x, y)

is given by Lemma 4.1.6, T (T ′
1; x, y) is given by Lemma 4.1.7 and

T (T”1; x, y) is given by Lemma 4.1.8. Hence

T (T2; x, y) = [x3 + 3x2 + xy + 2x]x

kauf + [x2 + 4x + 2xy + 3y + y2 + 2](x + y)

+ [y2 + 2y + 1](x + y + y2).

Thus the Tutte polynomial T (T2; x, y) using deletion and contraction

method is the same as the one found using Proposition 4.1.5.

4.2. Links associated with a triangulated ladder.

In this section we give the general notions of links which are relevant

to this thesis. Then we give a brief outline on construction of links

from planar graphs in general. Further, we construct a class of links

corresponding to a triangulated n-ladder. Finally we study this class of

links and give its component number. Notions defined in Section 4.2.1

and Section 4.2.2 are well known in knot theory. We refer the reader

to Adams (1994) for further details.

4.2.1. General definitions on links. A link is defined as an

embedding of n circles in R3. Each circle form a component of the
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link. A knot is a link with one such circle. We shall use the notation

L for links and K for knots if we would like to distinguish a knot and

a link. Otherwise we just use K when referring to either a link or a

knot. The usual presentation of links involves a projection from the

embedding space R3 to R2 with resultant apparent crossings of the

curves on one or more embedded circles S1′s. This presentation in R2

is called a link diagram of our link. The simplest link is a link with one

component and no crossing and is called unknot or trivial knot . It is

apparent that when the curves crosses one component is on top of the

other at that crossing. At any crossing of a link, the part of the curve

which goes over the other is called an overpass and the one which goes

under is called an underpass . In a link diagram, at any crossing, an

overpass is indicated by a continuous line and an underpass is indicated

by a broken line. A link universe is a diagram of link without any

information on which string goes under or over. An alternating link is

defined as one on which, as one travels along each of n embedded circles

S1′s, one traverses alternatively between overpass and underpass. An

orientation is defined by choosing a direction to travel around a link.

This direction defined by placing coherently directed arrows along the

link diagram in the direction of our choice. We say that a link is

oriented if each component has an orientation. It is obvious that a link

which is not oriented is called unoriented link .

Example 4.2.1. The diagram in Figure 24 is an example of unori-

ented alternating link. At the labelled crossing C, the part of a curve

labelled (d, e) is an over pass and the part labelled (a, b) is an under-

pass. The diagram in Figure 25 is an example of an oriented link. The

diagram in Figure 26 is an example of link universe.
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a

b

d

e

C

Figure 24

a

b

d

e

C

Figure 25

a

b

d

e

C

Figure 26

4.2.2. Construction of links from planar graphs. In this sub-

section we demonstrate the construction of a link diagram from a planar
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graph . Finally, we give an example of this construction by construct-

ing links corresponding to a triangulated n-ladder. Let G a planar

graph. Put an X across the midpoint of each edge of G. Now connect

the end points of the X’s in each region of the graph in such a way that

neighbouring end points are connected. The result is a link universe.

Then we can decide on which string to go under or over to create a

diagram. The link obtained from G using this construction is denoted

by K(G). To demonstrate this construction we construct step by step

a link corresponding to T4

Example 4.2.2. Step 1. We start with the planar graph T4 as

shown in Figure 27. Step 2. We put an X across each edge of T4 as

1 2 3 4

5
678

9 10 11

Figure 27

shown in Figure 28. Step 3. Now connect the end points of the X’s

in each region of T4 in such a way that neighbouring end points are

connected as shown in Figure 29. Step 4. Remove the graph T4 to

remain with a link universe U(K(T4)) as shown in Figure 30. Step 5.

Make the components to go over/under to create an alternating link

K(T4) as shown in Figure 31
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Figure 28

Figure 29

Figure 30
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Figure 31

This construction is reversible, that is we can construct a planar

graph from a link diagram. For futher details on this construction, we

refer the reader to Chang and Shrok (2001).

4.2.3. Component number of links. In this subsection we give

the component number of the link corresponding to a triangulated n-

ladder. For any unoriented link diagram K(G), a number

L(K(G)) = (−1)|E(G)|(−2)c−1

can be defined, where c is the component number of K(G) and E(G) is

the edge set of G, we are refer the reader to Mphako (2002) for more de-

tails. Thus by applying this to unoriented link diagram corresponding

to a triangulated n-ladder Tn, we get

L(K(Tn)) = (−1)|E(Tn)|(−2)cn−1

where cn is the component number of K(Tn) and E(Tn) the edge set

of Tn. We need to state and prove some lemmas before stating and

proving the one of the main results of this chapter. To ease notation,



4.2. LINKS ASSOCIATED WITH A TRIANGULATED LADDER. 82

in this section, we shall denote, T ′
n a graph obtained by adding an edge

f parallel to the last rung n, n + 1) of Tn.

Lemma 4.2.3. Let K(Tn) be a link diagram corresponding to Tn and

let K(T ′
n) be a link diagram associated to T ′

n. Then,

L(K(T ′
n)) = −L(K(Tn).

nn+1

n+2 n-1

3n-1

a b

c

a b

c
A

B

C A
C

B

Figure 32. K(Tn)

nn+1

n+2 n-1

3n-1

a b

c

d

a b

c

d

B

C

A
A

B

C
f

Figure 33. K(T ′
n)

Proof. We use a link diagram K(Tn) as shown in Figure 32 and

link diagram K(T ′
n) as shown in Figure 33. Recall that T ′

n is just Tn
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with a parallel edge on the last rung. We give both K(Tn) and K(T ′
n)

a similar labeling except at the crossing on the edge f which is only

in T ′
n. Let a, b, c, d be the crossing points as shown in the diagrams.

String B run through from crossing point a to b. String A run through

from crossing b to c and string C run through from crossing a to c,

see diagrams. We observe that A ∪ B ∪ C is one string according to

our labeling in Figure 32. Using the same labeling in Figure 33 the

new crossing d affects strings A and C by interchanging them. Thus

the whole string A∪B ∪C remains unchanged. Hence the component

number of K(Tn) and K(T ′
n) is the same. Thus c′n = cn where c′n and cn

are component numbers of K(T ′
n) and K(Tn), respectively. We know

that |E(T ′
n)| = |E(Tn)|+ 1 by definition of T ′

n. Hence

L(K(T ′
n)) = (−1)|E(T ′n)|(−2)c′n−1

= (−1)|E(Tn)|+1(−2)cn−1

= (−1)(−1)E(Tn)(−2)cn−1

= (−1)L(K(Tn))

¤

The next two propositions demonstrate how to compute the number

L(K(G)) for a graph G. For further details see Mphako (2002). We

need these propositions to prove the next lemma.

Proposition 4.2.4. If G is a planar graph, then

(1) L(K(G)) = (−2)n−1 if G is a graph with n vertices and no

edge, thus L(K(G)) = 1 if G is a single vertex.

(2) L(K(G)) = −1 if G is an isthmus or a loop.

(3) L(K(G)) = −L(G\e)) if e is a loop.

(4) L(K(G)) = −L(K(G/e)) if e is an isthmus and
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(5) L(K(G)) = L(K(G\e))+L(K(G/e)) if e is neither a loop nor

an isthmus.

Proposition 4.2.5. Let G be a planar graph. Then

(1) L(K(G)) = L(K(G/e/f)) if e and f are series pair; and

(2) L(K(G)) = L(K(G\e\f)) if e and f are parallel pair.

Lemma 4.2.6. Let K(Ti) be a link diagram corresponding to Ti,

where {i ∈ Z|i > 1}. Then cn = cn−1 + 1 where ci is the number of

components of the link K(Ti).

Proof. To prove this proposition, we apply Equation 5 of Propo-

sition 4.2.4. Let Tn be a triangulated n-ladder and let e be an end bar

edge, then

L(K(Tn)) = L(K(Tn\e)) + L(K(Tn/e)).

Recall that a diagram of a graph G represent the number L(K(G)). We

have an equation as shown in Figure 34. Now we compute L(K(Tn\e))

nn+1

n+2

n+3

n-1

n-2

=
n+2

n+3

n-1

n-2

n+2

n+3

n-1

n-2

n+2

n+3

n-1

n-2

=

=

Figure 34
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as shown in Figure 34 and applying Proposition 4.2.5 and Proposi-

tion 4.2.4. We start by contracting a series pair. Then we delete a

parallel pair. Finally we contract an isthmus and delete a loop. Hence,

as shown by the Figure 34

L(K(Tn\e)) = L(K(Tn−1)).

Next step, we calculate L(K(Tn/e)) as shown in Figure 35 and applying

Proposition 4.2.5 and Proposition 4.2.4. We start by deletion of a

parallel pair. Then we contract a series pair. Finally we delete of a

loop. Hence, as shown by the Figure 35

n+2

n+3

n-1

n-2

3n-1

n+2

n+3

n-1

n-2

3n-1

n+2

n+3

n-1

n-2

n+2

n+3

n-1

n-2

=

=

= -

Figure 35

L(K(Tn/e)) = −L(K(T ′
n−1)).
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But by applying Lemma 4.2.3, we get

L(K(Tn/e)) = −L(K(T ′
n−1))

= −(−L(K(Tn−1)))

= L(K(Tn−1))).

Now recall that cn denote the number of components of the link K(Tn)

and substituting in the equation

L(K(Tn)) = L(K(Tn\e)) + L(K(Tn/e)).

We get

L(K(Tn)) = L(K(Tn−1))− L(K(T ′
n−1))

= L(K(Tn−1)) + L(K(Tn−1))

= 2L(K(Tn−1))

= 2(−1)|E(Tn−1)|(−2)cn−1−1.

By Proposition 3.1.4, we know that |E(Tn)| = |E(Tn−1)| + 7. Thus

|E(Tn−1)| = |E(Tn)| − 7. It follows directly that

(−1)|E(Tn−1)| = (−1)|E(Tn)|−7 = (−1)|E(Tn)|−1.

Therefore

L(K(Tn)) = 2(−1)|E(Tn)|−1(−2)(cn−1)−1

= −2(−1)|E(Tn)|(−2)(cn−1)−1

= (−1)|E(Tn)|(−2)[(cn−1)+1]−1.

But by definition

L(K(Tn)) = (−1)|E(Tn)|(−2)(cn−1).
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Thus

cn−1 + 1 = cn.

and

cn − 1 = cn−1

¤

The next lemma is stated without proof, for further details and

proof, see [?].

Proposition 4.2.7. Let G be an n-wheel. Then K(G) is a 3-link

if n is divisible by 3. Otherwise it is a knot.

Proposition 4.2.8. Let K(Tn) be a link diagram corresponding to

a triangulated n-ladder. Then, for n > 1,

cn = n− 1

where cn is the number of components of the link K(Tn).

Proof. The proof is by induction on the number n. Let n = 2.

Then T2 is a 4-wheel. By applying Proposition 4.2.7 a link correspond-

ing to a 4-wheel is a knot. Therefore it has 1 component by definition

of a knot. Thus c2 = 1 = 2− 1. Hence proposition is true for the base

case. Assume that the proposition is true for some n = k. That is

ck = k − 1. Now consider n = k + 1. Let K(Tk+1) be a link diagram of

Tk+1 and ck+1 its component number. By Lemma 4.2.6 ck+1 = ck + 1.

Hence by induction hypothesis ck+1 = (k − 1) + 1 = k. Therefore the

proposition is true for any n > 1 ¤



CHAPTER 5

Conclusion.

We found a factor (λ − 2)(λ2 − 5λ + 7) to be multiplied by the

chromatic polynomial of a triangulated ladder of one size less, to get

the recursive expression of a given triangulated ladder, and the same

factor to the power n − 1, to be multiplied by λ and get the explicit

expression of a given triangulated ladder. The Tutte and the cobound-

ary polynomials are polynomials on two variables, and are expressed

respectively, as a sum of three Tutte and coboundary polynomials of

triangulated ladders of one size less, up to the parallel classes for the

last rung, with suitable factors as polynomials of the same variables.

The component number of a diagram link associated to a triangulated

ladder is the one less the size of that triangulated ladder.

This work is not exhaustive; we would like to go further in establishing

the recursive expressions of various polynomials we studied. Indeed, the

recursive expressions of these polynomials are presented on the form

of a sum of three different polynomials. Further research is needed to

find out the relationship between parallel class of triangulated ladders

we mentioned, in order to get a formal and unified recursive expression

of our polynomials. Among various graphs, Triangulated graphs have

a big range of applications in Science and Technology; therefore many

topics of them have to be explored.
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λ−coloring, 11

u− v walk, 8

acyclic, 8

adjacent, 7, 11, 20

alternating link, 77

basis, 9, 10

bridge, 11

chordal, 14

chromatic polynomial, 12, 20

circuit, 9

closed curve, 8

closed walk, 8

coboundary polynomial, 12

coboundary polynomial., 28

complement graph, 20

complete graph, 20

connected, 8, 11

crossing, 8, 77

curve, 8, 77

cycle, 8, 9, 14

cycle matroid, 9, 12

degree, 8

dependent set, 9

disconnected, 11

drawing, 8

edge, 7–11, 14, 18, 20

edge set, 7, 9, 15

endpoint, 7, 8, 10

endpoints, 7

forest, 8, 10

graph, 6–11, 14, 15, 20, 83

incident, 7, 8, 10

independent, 9, 12

independent set, 9

isthmus, 11, 83, 84

knot, 77

length, 8, 14

link, 76, 89

link diagram, 77

loop, 7, 13, 20, 83, 84

matroid, 6, 7, 9, 10
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multiple edge, 7

neighbor, 7

open set, 8, 9

oriented link, 77

overpass, 77

parallel edges, 7

path, 7, 8

planar graph, 8, 79, 83

polygonal curve, 8

polygonal u-v curve, 8

proper coloring, 11

rank, 9, 10

rank function, 10

region, 8

rung, 82

simple curve, 8

simple graph, 7, 14, 20

size, 16

spanning subgraph, 8

spanning tree, 8

subgraph, 7–9

tree, 8

triangulated, 14, 18

triangulated n-ladder, 15

trivial knot, 77

tutte polynomial, 57

underpass, 77

unknot, 77

unoriented link, 77

walk, 8
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